兒童統計概念分析（II）
—統計圖的概念—

蘇國樑
國立空中大學
商學系副教授

摘要

本研究主要在探求國小兒童如何了解資料分佈，用什麼方式去獲得資料分佈的概念。本階段乃一系列研究計劃之第二階段，目的在研究我國國小兒童對統計資料分佈概念的形成與如何發展出統計圖之模式或類型，並企圖找出兒童如何由統計圖產生對資料之意義的概念分析與對資料分佈的概念分析，以便繼續進行第三階段兒童對間斷資料與連續資料的概念發展與分析。我們希望能夠把兒童的資料分佈概念透過統計圖而具體化地描述出來；也就是說，希望能把在啓蒙時期的兒童自發性的統計圖概念的幾個階段歸納出來，並設法將它們用文字敘述加以刻劃。由此可以延伸而了解並企圖建立資料統計圖之意義與概念、資料分佈之意義與概念的發展模式，其中已發現之重要類型將加以敘述、討論：第一階段是圖演元素策略(graphing elements sequentially)；第二階段是圖演叢集策略(sequentially graphing clusters of elements)；第三階段是圖演幾何叢集策略(sequentially graphing clusters of spatially organized elements)；第四階段是再表現幾何叢集策略(sequentially re-presenting clusters of spatially organized elements)；第五階段是再表現子集頻次策略(sequentially re-presenting frequencies of subclasses) (蘇國樑，1995)。
ABSTRACT

The purpose of this research is to investigate how elementary school pupils understand conceptions of statistics about data sets and how children obtain conceptions of statistics about data sets. This is the second stage of a series of projects. The goal of the second year is to search and study the developmental models of children's conception about statistical graphs of data sets or data distributions in order to continue the third stage of the research, investigating the developmental models of children's conceptions on discrete and continuous data. Conception is a kind of abstract nouns, researcher try to generalize and induce the stages of child's autonomous developmental concept for statistical graphs on the base of data sets; also try to concrete those linguistic stages of concepts of statistical graphs. Consequently, it can be extended to understand and establish the developmental models of the meaning of data sets and the conceptions of statistical graphs of data distributions. In this short report, it will depict and discuss certain currently discovered possible patterns, they are temporarily named as following: (i) graphing elements sequentially; (ii) sequentially graphing clusters of elements; (iii) sequentially graphing clusters of spatially organized elements; (iv) sequentially re-presenting clusters of spatially organized elements; (v) sequentially re-presenting frequencies of subclasses.
壹、研究背景

在第一阶段的計畫中研究者比较偏重的是，儿童如何由具体物的操作产生初步的統計概念：資料分佈的概念分析。本阶段計畫的目标在探討兒童如何经由心智操作，将具体活動型式的統計知識內化成图形或再表現的知識。這是一個重要的轉換點，因爲由具体地對資料群序列性地交互進行點計或分群的組織型的結構活動，進而轉換(transform)成次數分配表來了解與陳述統計資料群的內容與關係，已是概念進化的一大轉變與考驗。能夠進一步，將所得的資料分配表轉化為統計圖，或是能由統計圖獲得原始資料群的內容與關係，這是內部化的操作(interiorized operation)而非較低層次的圖式或內化的運作(figurative or internalized operation)。因此，兒童研讀統計圖之能力的發展過程是本阶段的研究課題。

對於經驗世界的組織活動加以模式化的知識，則統計的知識指的是什麼？由第一階段的研究得知，統計的主要活動是造群的活動，兒童借著造群活動了解資料群的內容、關係、與特性。因此，使用統計圖之主要功能在以圖式方法來重造原始資料群，進而了解資料群的內容、關係、與特性。

國內外對統計功能與統計方法的論述很多，但都不触及統計概念的形成與發展，而且偏重以統計分析方法來研究分析兒童的統計概念。尋求知識或概念的發展，比較可行的是研究個體發生的過程，因此，研究兒童的邏輯知識、數學知識、與物理知識等等的發展可以幫助我們對統計知識與概念釐清。此種研究模式的研究對象在國小部份少之又少，目前僅有林澄茂(1989)提到以小數形式的數法則來協助兒童了解與發展機率概念，其中並未提及統計概念，即不提兒童的造群活動的概念是如何發生的。另外，國小數學實驗課程教師手冊第四冊(1994)提及由編題者提出不同之具體資料群，讓兒童在點計、繪計、排列與製成長條圖的過程中形成概念。雖然已注意到兒童為概念的建構者，但仍屬於理論推演，缺乏實證的基礎。因此，特化出(characterize)兒童如何蒐集資料、整理資料，再由整理過的資料做成次數分配表與統計圖的概念发展模式，这一系列的概念分析與發展是一個嶄新的研究課題。
貳、研究之目的

要研究我國國小兒童對統計概念的形成與發展，應由兒童對資料分佈的概念分析出發。因此，第一階段的研究目標可以放在兒童對「資料」與「分佈」的概念分析。這包括兒童面對目標資料集合時，如何界定資料集合、如何整理資料、如何分配資料集合、如何產生類的等價概念、如何在類的等價概念下區分元素彼此間的異同、如何進行分類、最後如何再重現資料分佈的意義、部份/整體、與資料分佈的關係。由上述的一系列問題的解答，可以了解與歸納出低年級國小兒童對「資料分佈」的意義與概念。

本研究乃是國小兒童對統計概念的形成與發展的一系列分析中三個階段的第二階段，本階段的研究目的可以放在兒童對「統計圖」的概念與分析，這包括兒童由原始資料的接觸，對資料的概念分析、資料整理、與分類的概念分析，進而描述兒童對長條圖、直方圖、折線圖、圓形圖，甚至百分比圖形的演進模式。然而，由於時間與經費限制，只能考慮與探討兒童對長條圖、部份折線圖的概念分析。所以，這階段的研究目的在由兒童既有的數字、數量、圖形或幾何概念歸納出兒童如何解釋由統計圖所表示之資料內容與關係的模式。在牽涉到兒童對統計的概念發展時，免不了要涉及兒童對面積、時間、距離、長度、與連續及間斷等概念的發展與分析，研究者不僅希望找出統計與前述各項概念間的縱橫關係，更企圖依此建立一套模式。

參、基本理論之研究

本節旨在探討有關兒童統計圖概念之基本理論及其類型。研究有關目前國小數學課程內容中統計部份，及探討有關數學教育與知識形成之文獻，可以初步地得到專家學者認爲之兒童統計課程的發展過程。但課程規畫之模式乃課程專家所作的假設，唯有借助實際地去觀察兒童的表現，才可能抽出並驗證有關兒童的初步統計圖概念之可能的理論與發展的類型。我們希望能將把兒童抽象的統計圖概念具體化
地描述出来；也就是说，希望能把在中年期盛开的统计图概念的幾個階段归纳出来，并设法将它们用文字叙述加以刻划。本报告只能做初步的理论探讨，因为时间与精力均十分有限。

儿童可能有初步统计图的活动经验，但不知道「统计图」与资料群体间之关系，即不知道「统计图」究竟可以表示何物。对知识或概念的产生感到兴趣时，可由兩個方向开始探索，即知识论与心理学者，这在第一阶段的研究报告(苏国樑，1994)已有论述。首先，重新探讨知识论与心理学者，做为理论研究之基础，其次，要讨论的是统计图的初步概念。

一、知识论与心理学

要探讨儿童统计图的概念时，会涉及「知识」何以形成的问题，这是个古老的哲学问题，即「知识是什么？」(What is knowledge?)与「何谓知道？」(What is to know?)。先确定我们在知识论与心理学中所持的立场，而由「数概念」的界定方式(甯自强，1993)，进而推广，界定理论上儿童的「统计图概念」，因之牵涉到重建客体时之事實性与有效性。

1、根本建构主义

本研究是采用根本建构主义的观点，因为人类的知识是由个人对客観实在界所做出的有效之物理活动(physical activities)与心理活动(mental activities)，这些活动的思考过程的抽象就是知识。根据根本建构主义的创导者von Glasersfeld的看法(1990)，此主义有两项最根本的原则(甯自强译，1995)：

(1)知识并非被動地經由感官或溝通而获得的；知识是由认知主体主動地建构而成的。

(2)①认知的功能自生物学的观点来看是適應的，其目的在於相容或是可存活的；
②认知被主体用來组织其经验世界，而非发现客观的本体實在。

「统计学」的傳統解释及看法是指所謂的「搜集資料、整理資料、分析資料，再由分析資料的结果來作推論的科学方法謂之统计」。由此定义，我们可以体会出「统计」是一个动词或可為一个说明该动作的词，則「统计学」则是一个处理资料的动作方法。因此，製作统计图是一个处理资料的方法，它是把组成一群资料的所有成份，借著圆式整体地表现出群的结构。统计既然是一个活动，概念亦可由对加诸于客体上之动作方法的反思(reflection)而建構，因此，借由儿童读图与製图活动
可以獲得兒童的統計圖的概念。

基於採取根本建構主義的立場，我們可以推得上述中，不論是動作或是方法均是成人的看法與論點，兒童或許會持不相同的看法或是做出不同的動作。因此，兒童的統計概念的產生與發展的類型不見得會符合研究者的想像。也就是說，兒童之「統計圖概念」可能與研究者的經驗有所差異。這些差異不但可以提供我們是否需要重新思考兒童統計概念的發展類型，也可以提供是否需要重新定位與安排國小數學課程中的統計課程。當然，模式不是固定的，如果發現新的概念類型或現有的概念類型不足以解釋時，則必須修正目前已知或已建立的模式，這樣才能擴大對兒童知識的了解範圍。

必需先行指出的是，研究者是無法透視兒童的內心世界，即研究者無法了解兒童到底有否我們所想要知道的知識或概念。故而研究者需要利用佈置情境與提出適當問題，讓兒童答出問題或操作具體實物，再試圖由兒童的這些外在活動來推測其內在想法，因而解釋並得到有關的兒童概念類型。要注意的是，研究者的情境、佈題、與問話可能會影響兒童的答話，更不應做過度的闡釋。

2、認知發展論

由根本建構主義的主張可以了解知識是個體為了適應環境，所產生的活動經驗類型，而不是單純地把客觀世界複製。von Glasersfeld(1995)認爲皮亞傑的認知發展論的主張則是，知道(knowing)是一種調適活動（adaptive activity），即知識是一種在既定的目的下有效率且成功的概念與活動的內涵。因此，知識是人類為了適應生存而對環境所做出的同化與調適而得之經驗的抽象。認識客體並不意味著複製客體，而是認識客體所能被加諸的活動及其結果。因此，兩者的主張似乎是相容的。

為什麼兒童能夠在環境中逐漸適應？為什麼兒童能夠發展他的智力系統來處理生活上各種不同的需要？皮亞傑(1971)認為，個體的平衡過程就是智慧對環境與刺激的穩定過程(processes of stability)。有機體的特性是保持穩定狀態。當個體碰到一個刺激時，會發生不穩定狀況，因此，會同時發出相對的反應，才能回到原來或新的穩定狀態，皮亞傑稱這一個過程為「平衡」。平衡的方式有兩種，一是同化(assimilation)，是指兒童對所遭遇的問題情境，把它們併入心智中的舊模式並嘗試著去解釋；另一是調適(accommodation)，是指兒童在運用舊有的經驗模式來解釋所遭遇的問題情境時，對舊模式所做的修正，或構造出新的模式。經過重複和歸納的過程而保留的平衡後的思考模式(Confrey, 1995)，即為「基模」(scheme)；由是基模
是可重複使用的。

von Glasersfeld (1995) 認為調適的概念與生物體在進化的過程中的適應概念是相類似的，但卻有著比生存更高的目的，這個目的是把人類的經驗世界化成相關的概念的組織。以動物而言，能夠通過物競天擇必須具有一些必要的活動與狀態來處理在其生存環境中的一些困難。然而，人類思想者所需要面對處理的困難是發生在概念層面上的。若認知者無論如何的調整，仍然無法將所要調適的有關獨立實體掌握到人類的認知中，則這個活動或概念是失敗的。對生物體而言，能夠在其中環境生存下來便是存活。對建構主義者而言，如果所創造出的概念、模式、或理論等等，能夠證明它們在情境(context)中是夠用的或有效的便是存活。因此，存活並非表示要能夠完全表現出本體真實。兒童若能將研究者所佈之具體條件進行分類、點計，而繪出統計圖；同時能由給定之統計圖重新製作出所指示的資料時，可以說是具有統計圖的概念。

由上可知，皮亞傑主張的認識論在本質上是一種思維適應於現實環境的理論，而這種適應歸根到底表明了主體與環境對象之間存在著永不完結的相互作用。透過這種看法可知，統計的知識不是被動地從環境中吸收的(古典經驗主義的主張)，也不是預先在兒童頭腦中形成，並隨著兒童的成熟依時出現的(古典理性主義的觀點)，而是由兒童透過他的心理結構與給予他的資料情境之間的相互作用而構成的。研究者由兒童對研究者所提出的問題後，所做的反應來了解並解釋兒童內心的變化過程，在本質上是與皮亞傑的主張相容的。也就是說，觀察並企圖解釋兒童如何對有關「統計圖」的解題活動而進行內化(internalization)及內蘊化(interiorization)(甯自強，1993)，產生平衡後的基模，正是研究者的追求目的。但在觀察的過程中，由於研究者僅能對兒童的外顯活動加以解釋，是以所建構出的模式必須透過手段，以期能符合兒童的原始用意，這樣的模型始能存活(甯自強，1993)；所謂的存活，在此指其功能上的有效性能。

3、統計圖一詞之意義

在第一年的報告(蘇國樑，1994)中提出，「統計」依傳統的解釋為，用來處理、分析、與解釋數量化資料的方法，統計圖是「統計方法」的一種表現方式的結果。然而，由於知識論上的探究，我們發現統計應是一個處理、分析、與解釋可數量化資料的動作或方法的模式，動作和方法描述了主體與環境間的交互關係。統計圖則是一種描述了主體與環境間之交互關係的方法的結果。我們為什麼需要這個結果？
有了這個結果後，我們可以對資料產生什麼樣的思考方向或概念？此為二問題為統計
圖製作的原始目的。次數分配表與統計圖都是為達成目的的方法與結果，透過統計
圖的製作把組成一群資料的各成份表現為圖式，與統計圖式掌握住所要表現的資
料群及其內容。這裡我們必須說明的是本研究所談到的統計圖是指長(直)條圖，因
為兒童的數概念(容自強，1994)發展歷程以及時間上的限制，無法進一步探討牽涉到百
分數與小數圖形圖。折線圖出現連續與間段的概況，已列為第三年計畫之範圍。
現在是兒童到底如何借著統計圖去操作、「統計」資料？或是否資料「統計」
出統計圖？根據建構主義者的觀點，一個統計詞的意義是指由此統計詞所引發出
的基模，這個被統計詞所引發的基模則是由兒童本身之經驗所建構而得的。一個統
計詞是指有統計行為的意圖或連思，不見得非實際實施統計行爲。相反地，兒童或
許不知道有「統計圖」這個名詞，卻也可能有統計的活動，這裡所指的統計活動是
有關分類、點計、重述、做出長(直)條圖、或重造資料群體等等之外在或心智的活動
而言。另外，需要說明的是同一組資料也可以不同的統計圖來表示，譬如，長條圖
中可以分橫式或縱式來表現，加刻度或不加刻度，橫軸名目交換等等。

二、統計圖概念的初步瞭解

由知識論與心理學的基礎，可以看出欲探討兒童的資料「統計圖概念」，即是
欲探討兒童面對一組或多資料時，如何掌握、描述甚至預測該資料之結構並將將其轉
化成統計圖來表示的可能類型。皮亞傑(1969)說明分類是指同一類別中各個成份的相
似關係以及不同類別中各個成份之間的不相似關係的整體。由第一年的研究得知，
透過資料分類與資料分配表不僅可以如布魯納(J.S. Brunner)所指出：能在識別物
體和事件時迅速地按預定的種類分開，減少周圍事物的複雜性，可以降低神經系統
的負荷；而且能平衡、穩定兒童的認知系統，迅速得到對資料結構的概況。而圖示
的方式更能進一步地簡化資料中的子群與母群之間的關係，亦可以使人一眼了然，
因爲由圖的大小或長短均可表示子群內容成份的多寡的相對關係，而此一相對關係
的察覺並不會得非獲得各子群內確實之組成元素的整數不可。因此，透過對兒童造
群活動的觀察，除了可詮釋兒童資料分佈概念形成與發展，也可歸納出兒童統計圖
概念的形成與發展。

1、統計圖範圍的界定

這裡我們想了解兒童對統計圖概念與集合概念間的關係。資料——可能是一堆
具體實物，也可能是一個統計圖——是一群可觀察（observable）與可測量（measurable）的對象，在這些對象中我們可以由各個單位所擁有的性質（characteristics）觀察出單位間彼此之異同。這些可觀察的性質（蘇國樑，1994）便是用来概括化、描述或代表該群資料，也是用來產生統計圖的基準，因爲這些可觀察的性質是構成資料整理中之分類、分組，或是製作統計圖時之依據的依據。因此，若兒童的資料概念是建立在由具體物重製資料集的活動上，和在不透過具體物而進行的資料的抽象重製之可逆溯的運思上，則統計圖概念的產生是建立在由圖式符號來進行對原始資料的抽象重製之可逆溯的運思上。

研究者計畫將晤談教具，如積木、花片、或木條等，呈現在受測兒童面前時，該教具則是兒童所面對的資料。三、四年級的兒童可以很快地由書面、語言或手勢界定了資料的範圍與元素的組成性質。於是，兒童可由聽覺與視覺立即掌握到，資料在一個有限範圍內具有某種特性或被指定的事物所成的集合。因此，統計圖的範圍必然與資料散佈的範圍一般，不是漫無界限、毫無邊際、無所不包的全部事物或性質。而研究者將已設計之統計圖呈現在兒童面前時，這個圖表便是兒童所面對的資料，當兒童掌握了資料——統計圖——必然也掌握了資料的範圍，因為統計圖本身就是一個在情境中意義範圍有限的圖表。由是，研究者希望由兒童對統計圖意義範圍的界定活動——讀圖與製圖，來了解兒童對資料分佈概念與統計圖概念的相互關係。

2、無時間因素之整理、分類

目標資料在二次呈現下所成的範圍界定後，何以會產生分類的活動與運思？可能與為達成經驗中資料的複雜性及所佔空間的減少有關。這種減少可以協助經驗的組織活動在心智的負荷上的減低。對三、四年級兒童而言，依事物外表特徵如形狀或顏色做分類是一件很自然且毫無困難的工作，可能因爲在二年級的數學課程已經涵蓋了點計、分組的統計課程。然而，整理不僅可以解釋成分類的需求。他們對分類活動後的真正功能意義開始並不很了解，經常回答這樣做比較不佔位置（空間），這也符合皮亞傑所提出幾何概念的發展是拓樸概念先於度量概念的主張。因此，所進行圖式化紀錄資料與重製資料時幾乎採用對應於資料的分類次序，而不考慮子類在群內的重要性。關於進一步地點計而轉化成數字資料，或做成幾何圖式後，更有利於資料的比較、概念傳遞與保存之類的資料處理概念，兒童則尚在萌芽階段。

中央化分類（centralization classification）活動（蘇國樑，1994）在初期是比較常見
之兒童的分類活動，這種特性在成人所製作統計圖的設計上也可找到。一般而言，成人所設計之統計圖通常將資料中重要的組成元素放在中央位置而顯現其重要性，愈往兩側放置者則表示其重要性愈低。然而，中年級兒童由具體物所做出的統計圖卻無此現象，通常是依資料外在之長度，或顏色的深淺、鮮豔程度，或類組內所含元素次數大小為長條圖之排列呈現次序之依據。

二年級兒童已經可以完全掌握分類活動的運思，除了考慮分類外還加上考慮子集合或子類(subclasses)內元素彼此間之等值關係，再加上函數對應之關係等的邏輯運思。因為二年級兒童明顯地表現出累進性合成運思(progressive integration operations)(甯自強，1993)，可視部份資料內嵌於全體資料之中，因此，能迅速點計分類後之各類組內之資料次數，再累加計算出總次數，因爲整個群體在被運作的前後並無增添或移走任何元素(蘇國樑，1994)。基於二年級的兒童已有此一表現，由於大致上三年級的兒童均具有累進性合成運思，理論上三年級的兒童也應當能完成二年級兒童的表現，或甚而有更高級的成就。

至於進行類組(子群)間的比較，或透過類組的整體再表現(即統計圖)來進行類組間的比較，事實上是在全體中考慮不同部份間的數值差異；易言之，兒童是否具備所謂的部份/全體運思(part-whole operations，Piaget, 1956；甯自強，1993)，對於前面的再表現後的類組比較，應有關鍵性影響。至於將群體予以結構性的重組，即，使用不同的分組基準，或是組間次序的差異，則需要更高層次的運思，是否能在四年級看到該運思的具體活動類型，則有待研究證據的進一步辯證。

3、有時間因素之整理、分類

兒童可以由空間概念意識到資料散佈的範圍，且資料的一種分類亦是資料的各種不同組合方式的其中一個可能。分類活動可以簡化社會活動，亦可以掌握到整體資料所包含之元素的一種屬性結構。數(アメイク)(数(アメイク)活動可使兒童同時掌握到分類活動後全體資料的量的結構，即只需要點計各個類組內所包含的元素個數，所謂的各組或類的次數或類頻。這可以簡化描述資料結構的過程。雖然，兒童能以點計來掌握資料的內涵且重製資料群，表示兒童已發展出能利用單位化的測量活動組織，進而重製資料，而不必再依賴資料元素的具體逐一再表現出組織或重製資料。然而，若資料出現的時間不一致或資料出現後即消失，則只能利用具體物做分類與點計便形成了障礙。這時能將具體物轉化成文字、符號、表格，或進一步化為圖表便成重要轉換點。至於能進一步地配合資料紀錄表的發展而製作出次數分配表
與統計圖來描述原始資料，則表示兒童具有資料分佈與統計圖之概念。此時，兒童
已經完全剔除不同時空之因素，而專注於掌握統計圖與資料內容之間的關係為資料
主要的結構。

4. 統計圖

由統計圖的結果去掌握資料從而產生資料分佈的概念，如同一組資料可以表示
成不同之統計圖，而不影響其內容結構。此時，表示兒童已能掌握對資料分佈概念
與統計圖概念的相互關係。當兒童面對散佈的目標資料集合——具體物資料或統計
圖——時，透過視覺與聽覺可以觀察到組成具體物資料之元素的外在性質(例如，大
小、形狀與顏色)，及元素與元素間與此外在性質有關的關係，即兩元素是否相似或
不相似。觀察統計圖資料時，呈現在圖上之文字、刻度、大小或長短便指示出各子
類間的關係。雖然無法實際地觸及資料，但兒童會在其內心中再表現其所經驗過的
具體物並用以對應於該統計圖。必須注意的是，當具體物資料的兩元素被比較時，
兒童所掌握的關係不一定與外在性質有關，例如當外在性質選定為顏色時，兩元素
的時間先後、空間位置即與顏色無關；而往往兒童卻容易考慮空間關係為顯著因素(蘇
國樑，1994)。至於統計圖示在空間位置上的圖示差異是否仍為兒童所考慮的顯著
要素，則有待實驗證據的蒐集。

由於具有累進性合成運思之兒童，已經可以理解將資料重新排列後，雖然改變
個別元件間的時間與空間關係，但並不改變資料的其他非時空間屬性關係結
所，分類與記錄活動便被用來掌握資料的非時空間屬性結構，即構成資料之組成個
別元件的各種外在或內在(材質或重量)的性質間的關係。總之，資料分佈概念的產生
是來自於掌握或欲重造資料的屬性結構。統計圖則是一種利用簡單圖式的方法來描
述或傳達資料的屬性結構，即資料分佈的幾何方式，包括個別元件間、資料群體與
子群體間以及元件與群體或子群體間的關係。除了前面提到的由於累進性合成運思，
使得兒童不再計較個別元件間的時空差異，但子群體的時空差異可能尚被質疑外，
如長條圖的連續表徵可否使用於離散資料上的累積的再表現情境，也是待檢驗的問
題。雖然離散資料與連續資料的表現差異是第三年研究的課題，但本年的研究中仍
可做初步地檢查。

如果資料分佈並非單指著不確定性的散佈或無目的之混亂，而是指能夠在減少
心智負荷下仍能呈現出意圖所需的完整資料結構之功能性概念。則能夠對目標資料
集合進行記錄、分類與歸類活動而製做出統計圖；或者由已知的統計圖自行建構具
體或抽象資料集合，用以配合給定之統計圖，表示兒童已具有統計圖對資料分佈有描述或替代概念。這顯示兒童已能透過類的等價概念、比較標準單位概念、與類似函數對應的歸類概念等，對原始資料集合進行較具分析性或有序性的組合活動，並進化到能對原始資料之幾何化的再表現（re-presentation），即，做出原始資料的有組織的幾何圖式表徵。總之，「統計概念」是對整組資料或具體物的重造（re-producing）或再表現（re-presentation）的經驗活動上之抽象；而「統計圖概念」則是將前述之抽象經驗活動轉換成圖式的抽象經驗活動。統計知識是經過一序列的分類、點計、次數化，甚至圖表化之活動與運思而獲得的產品。因此，本階段的研究可以由了解兒童的資料分佈概念與統計圖式概念之間的交替為出發點，來了解兒童的統計圖概念的啓蒙。

肆、統計圖概念策略之模型與訪談問題草稿

本節將分兩部份。首先，就文獻探討所得之虛擬的統計圖概念假設模型，其次，將說明所擬之訪談問題與選擇訪談問題的理念。

一、統計圖概念模型草稿

由於統計概念的產生與序列、分類及……對應等邏輯數學運算有密切關係，因此，我們除了闡述有關兒童數概念之發生與啓蒙的文獻（Piaget, 1965, 1993, 1994)做為參考外，本研究的第一階段的報告（蘇國樑，1994)亦是十分重要的參考資料，因其為第一件本土資料。然而，只考慮資料分佈概念是不夠的，因爲兒童的資料分佈概念可以由將具體物數量化，加上考慮元素間、元素與群體間的關係，並涉及群體與子群體間的關係即可獲得。而「統計圖」是處理所面對的一組具體實物資料或數字資料的操作方法，很顯然的，活動的結果會不僅改變原始資料的空間關係，甚至改變過去以文字或數字的表現方式。雖然不會改變資料原來的組成結構，但卻以可能完全與資料原來的組成份子在外在或內在特徵無關的圖式表現出來。「統計概念」則包含了對整組資料或具體物的重造（re-producing)或再表現（re-presentation)的經驗活動上之抽象；而「統計圖概念」則是將前述之抽象經驗活動轉換成圖式的抽象經驗活動。由於，統計活動的目的在於掌握及複製一群體，
我們可以由了解兒童掌握及複製群體的讀圖與製圖活動來了解兒童的統計圖概念。這種再複製或再表現的活動基本上可以分成五個階段：

第一階段是圖演元素策略(graphing elements sequentially)；即，兒童繪製群體的圖形係依群體中元素的時空出現位置或順序，予以錄影重演式地複製活動或運思，空間或時間排列特徵被使用來判斷原始資料群與所繪出之圖式群是否相似。

第二階段是圖演叢集策略(sequentially graphing clusters of elements)；即，兒童繪製群體圖形時依群體中元素分類後的出現位置，予以對應繪製的活動或運思；此運思強調出現之分類與歸類的一一對應，且空間的排列特色影響其繪製群體的活動。繪製時，對應單一元素的尋求及確定為其特色，兒童尋求繪製同類物的集中活動。

第三階段是圖演幾何化叢集策略(sequentially graphing clusters of spatially organized elements)；即，兒童繪製群體圖形時依群體中元素分類後的出現類組，予以對應繪製的活動或運思；此運思強調出現之分類與歸類的集中，故空間的排列特色並不影響群體的等價。繪製時，兒童尋求繪製出同類物的並置活動。

第四階段是再表現幾何化叢集策略(sequentially re-presenting clusters of spatially organized elements)；即，兒童先確定同類物所形成的子群的範圍，以其它記號或圖形代替原始資料群體中之元素的方式繪製子群活動或運思。其特色為兒童專注於繪製等數量之記號以對應特定子群體，其他子群不予考慮。此時，以簡單之符號代表元素的概念已注入。

第五階段是再表現子集頻次策略(sequentially re-presenting frequencies of subclasses)；即，兒童以同一單位的長度表示不同子群的元素，而非只專注特定類群中個別元素的重複與繪製活動；易言之，子群被表現的空間位置或結構並不影響整群的資料結構，子群中的元素與母群與子群間的關係為頻次關係，而非其他的空間或物理關係。此階段的特色為，圖式的資料群體概念已經頻次化。

這種假設的階段分法是根據目前小學數學課程(國立編譯館，1989)中關於統計圖課程的編排與發展方式，及參考基模理論(甯自強，1993)與本研究第一階段的理論模型(蘇國樑，1994)而發展出來的。這也是我們對兒童統計圖概念之模式的理論假說(hypothesis)。我們必須結合實際地蒐集與觀察兒童操作資料具體物時的活動過程，經由檢視、詮釋後，才能修正並結論出經驗的兒童統計圖之概念模式。

過去有關於數學概念或統計、機率概念之研究大多偏重在所謂量的研究，即利
用大樣本取樣之問卷調查的結果來解釋或推論對象全體之外顯特質。雖然這種研究方法可以提供對群體全體的外在表現，但容易混淆研究者的假設與個體實際發生的活動，即問卷的外顯特質的釐定缺乏實際的比對，尤其是，無法知道概念的發生過程。為了瞭解兒童如何形成資料概念，本研究將採用認識論中之建構主義的理論與皮亞傑在心理學中所提出之認知發展理論的理論立場，即知識的獲得來自對週遭環境活動過程的結果所造成之經驗累積的模式化。

二、訪談問題草稿

圖式化的資料分佈概念在實際中，是指具有以幾何圖形來描述一群資料組織中元素與元素間的關係，元素與群體間，以及群體與子群體間的關係的知識；或是能夠依給定之統計圖下，以具體物、數字重製資料群體的知識；這些關係的產生是在對資料群做成統計圖或由統計圖重製資料群活動時發生的。分類活動的功能是什麼？有了分類後，我們可以對資料產生什麼樣的思考方向或概念？尤其是兒童到底如何去進行「統計圖」(動詞)活動？以及兒童如何解釋「統計圖」活動對資料所做出的影響？這一連串的問題便是我們訪談問題的基礎理念。

一、統計圖範圍的界定

資料範圍的界定，除了在特定的時空範圍內列舉所有的事物外，另一種基本方式則是透過對事物所具有之屬性的描寫來規範涉及事物的範圍，關於這方面的資訊可以參考第一階段的研究。本年研究重點在統計圖的概念，因此，利用統計圖來調查元素與元素間、元素與群體間、子群與群體間之關係時，統計圖所指之對象具體物所涵蓋的空間，經過圖上之文字與符號的規範之後，涉及的事物便自背景中突出而成為一單元體。當察覺到此單元體中有獨立的元素時，則成爲由構成元素所合成的群體。構成群體的元素可區分為具體的與抽象的兩類，這裡所謂具體的是指給定之群體元素其間表面特徵可以經由視覺或觸覺而感覺到者；兒童內心所自行建構者謂之抽象的。
1. 具體性資料

<table>
<thead>
<tr>
<th>情</th>
<th>境</th>
<th>問</th>
<th>題</th>
<th>目</th>
<th>的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一些表面特徵相似之具體物，如彩色花片、彩色積木、或彩色長條積木等。</td>
<td></td>
<td>1. 請問看到什麼東西？</td>
<td></td>
<td>調查掌握的資料範圍與內容。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 你怎麼知道的或為什麼？</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. 圖式資料

<table>
<thead>
<tr>
<th>情</th>
<th>境</th>
<th>問</th>
<th>題</th>
<th>目</th>
<th>的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置若干統計圖，如直式長條圖、橫式長條圖、或折線圖。</td>
<td></td>
<td>1. 請問看到什麼東西？</td>
<td></td>
<td>調查掌握的資料範圍與內容。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 你怎麼知道的或為什麼？</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(二) 資料之整理、分類

分類與歸類的問題在探索兒童如何區分與利用具體物的外表特徵，對群體加以系統化的整理——分類與歸類。由分類活動來調查兒童是否掌握資料中所包含的時空因素，及其對資料分佈之概念。同樣地，受測者仍然接受具有時間因素之資料與無時間因素之資料的測驗，以便了解其行爲的特性。

1. 無時間因素之整理、分類

<table>
<thead>
<tr>
<th>情</th>
<th>境</th>
<th>問</th>
<th>題</th>
<th>目</th>
<th>的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一些表面特徵相似(單一屬性)之具體物，如彩色花片、彩色積木、或彩色長條積木等。</td>
<td></td>
<td>1. 請問這一堆裡有什麼東西？</td>
<td></td>
<td>調查對資料所包含的事物屬性的使用及區分。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 你怎麼知道或為什麼？</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. 有時間因素之整理、分類

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前依序佈置一些表面特徵相似（單一屬性）之具體物，如彩色花片、彩色積木，或彩色長條積木等。</td>
<td>1. 請問看到什麼樣子的花片（或積木）？</td>
<td>調查對資料所含事物同一屬性之不同時間的掌握及區分。</td>
</tr>
<tr>
<td></td>
<td>2. 你怎麼知道或為什麼？</td>
<td></td>
</tr>
</tbody>
</table>

（三）統計圖（群的再製）

對一心智事物之發展的了解需從其被表現出的各種活動上來看，這樣才能推測兒童有無該項概念。研究者是無法透視兒童的內心世界，因此，無法了解兒童到底有否我們所想要知道的知識或概念。故而需要利用佈置情境與提出適當之問題，由兒童回答問題或操作具體實物的企圖與其外在活動來推得其內在想法類型與模式。本節主要探討的統計圖概念之類型與模式，本階段研究只考慮所謂單一屬性資料的情境。

1. 圖演元素策略

最基本的資料重造或重述方式是所謂的依樣畫葫蘆，也就是研究者怎麼排列或放置具體資料，則兒童不但需要利用一對一的方式，兒童一個一個地依自行採用與資料對應的圖式照排、繪畫出來。排列時需要顧及事物間的空間或時間關係。

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前依序布置一些具體物，如彩色積木、花片、或長條積木。</td>
<td>1. 請把這些積木整理一下。</td>
<td>在調查如何組織資料中的元素，以及掌握組織後的資料構成元素。</td>
</tr>
<tr>
<td></td>
<td>2. 請說出有什麼樣的積木？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 你怎麼知道？</td>
<td></td>
</tr>
</tbody>
</table>
2. 圖演叢集策略

這裡研究者企圖了解兒童能否發現及如何發現，圖式之分類與歸類活動後資料所包含的元素與元素之間的空間關係並不會改變資料的組成結構。主要在觀察兒童是否了解圖式資料的重造與原始資料排列之次序無關。

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一堆具體物，如彩色長條積木等。</td>
<td>1. 請畫出這一組積木。</td>
<td>在調查如何比較資料的結構，以及結構的構成元素。</td>
</tr>
<tr>
<td></td>
<td>2. 請問這兩組資料一樣不一樣？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 你怎麼弄的？</td>
<td></td>
</tr>
</tbody>
</table>

3. 圖演幾何化叢集策略

這裡研究者企圖了解兒童能否發現及如何發現，資料所包含的元素與元素之間的空間關係並不會改變資料的組成結構。主要在觀察兒童是否了解類組內事物之個數與其並置排列之長度的關係。

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一堆混在一起的具體物，如彩色花片、與彩色積木等。</td>
<td>1. 請畫出這一組積木。</td>
<td>在調查如何比較資料的結構，以及結構的構成元素。</td>
</tr>
<tr>
<td></td>
<td>2. 請問這兩組資料一樣不一樣？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 你怎麼弄的？</td>
<td></td>
</tr>
</tbody>
</table>
情境 | 問題 | 目的
---|---|---
在被訪談者前佈置一些具體物，如彩色方形積木、或彩色長條積木、不透明方巾一塊。 | 1. 請問這兩堆方形積木一不一樣。
2. 請說出有什麼樣的方形積木？
3. 你怎麼知道？ | 在調查能否掌握資料的組成，以及結構的構成元素。

4. 再表現幾何化叢集策略

前面一再強調資料分佈概念是建立在兒童是否能對研究者所提供之群體做出分析、解釋、重造、甚至預測的各種邏輯活動。因此，逐類重製邏輯是資料分佈概念演化過程的一個重要里程碑。前面提過，資料分佈包含群體和子群體間的關係，必需能以子群體為製造單位的方式來進行資料重製活動，才能算是真正開始掌握資料分佈概念。

### 情境	問題	目的
在被訪談者前佈置一些統計圖。 | 1. 請說出有什麼樣的內容？
2. 請做出一組一模一樣的積木。
3. 你怎麼知道？ | 在調查類似概念對資料重造活動的影響。

### 情境	問題	目的
在被訪談者前佈置一些統計圖。 | 1. 請做出一組一模一樣的積木。
2. 請做出一組一模一樣的花片。
3. 你怎麼知道？ | 在調查類似概念及數概念對資料重造活動中的角色。
5. 再表現子集頻次策略

在這個階段中，可以預測兒童對統計圖所指示的資料的概念，不需要像前一個階段必須先透過具體物資料的重製後，才能獲得資料分佈之概念。而是直接由一組統計圖中抓出所指示之資料集合中所含的各個元素，來比對另外一組統計圖中所指示之資料集合中所含的各個元素，由操作的過程可能會有次序、可能毫無次序，甚至每一抓當中會有各種不同的元素，但最後的組合便是研究者所要求的資料重製。

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一些統計圖，直式長條圖式或橫長條圖等。</td>
<td>1. 請問這兩組統計圖一不一樣？</td>
<td>在調查能否掌握資料的空間結構是否影響資料的重製運思活動。</td>
</tr>
<tr>
<td></td>
<td>2. 你怎麼知道？</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一些統計圖，直式長條圖式或折線圖。</td>
<td>1. 請說出這兩組統計圖一不一樣？</td>
<td>在調查能否掌握資料中組成元素的結構與其所包含之元素間的空間關係無關。</td>
</tr>
<tr>
<td></td>
<td>2. 請說出有什麼樣的積木？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 你怎麼知道？</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>情境</th>
<th>問題</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>在被訪談者前佈置一些統計圖，如具體物分類圖或長條圖等。</td>
<td>1. 請說出有什麼樣的內容？</td>
<td>在調查能否掌握資料的表徵。</td>
</tr>
<tr>
<td></td>
<td>2. 請做出與這一組具體物分類圖一模一樣的長條圖</td>
<td>在調查能否複製資料。</td>
</tr>
<tr>
<td></td>
<td>3. 你為什麼這樣弄</td>
<td></td>
</tr>
</tbody>
</table>

關於折線圖亦可如長條圖般用來指明不連續資料，在這裡只是做為檢驗兒童讀圖的活動概念。而進一步探討不連續資料與連續資料的紀錄，保留至下一個階段分析不連續資料與連續資料概念時再進行探討。
伍、回顧

本研究計畫執行成果：
1. 三年級兒童可以具體物做成之序列來比較類組間彼此多寡的能力，然而，缺乏利用不同統計圖來比較類組間彼此多寡的能力。
2. 四年級兒童可以做出分類活動後，可以再依分類所得之各種組為基準進行類組間的次數與幾何的比較。充分顯示分類活動的模拟能指導重聚的活動不僅可以獲得類組內之次數，亦可作為統計圖特性之基準。已經具有利用不同統計圖來比較類組間彼此多寡的能力。
3. 在統計圖式資料作比較時，兒童容易考慮圖形的表示方式，譬如，三年級兒童對不同圖式所指的同一資料進行比較時，表示無法確定。然而，中年級兒童所製作之統計圖仍然受到具體物外在形狀的影響，譬如，他們幾乎一致認為長條形圖不適合用來描述花片。長條形的積木等等，因為前述兩者在分類與排列後無法化成底為相等之長條形的形狀。實際上，長條圖是建立在具體物的「個數」與其作直線排列時的「長度」之間存在等價關係，而非具體物外在的形狀。這也出現在由長條圖複製花片時，兒童幾乎以花片置於條形上做長度與次數之比較，企圖求出各類組的花片個數。
4. 子資料與全體資料的部份／全體間在統計圖上的聯絡亦是明顯與值得探討的目標之一。中年級兒童明顯地表現出累進性合成運思（progressive integration operations），可視部份資料內嵌於全體資料之中，因此，不僅能迅速肯定分類前與分類後之資料並無差異，因為前後並無增減或移走任何元素；而且在統計圖所指示的同一組資料並不會因分類與否而改變內容。這顯然已經具有視部份資料宛如和全體資料一樣的獨立事物的能力，而此能力存在為部份／全體運思（part—whole operations）的特徵。
5. 中年級兒童已經可以掌握圖例上關於頻次的說明資料的內容結構，然而再表現時卻受到圖式之幾何形式的影響，可以得知空間關係在兒童構築統計概念時的影響力，在4、5策略階段亦可明顯地看出。
6. 第一年計畫發現兒童對資料分佈概念類型分為四個階段。本年度發現兒童透過統計圖來獲得資料內容結構，元素與元素間、元素與子群間、子群與子群間、
及子群與母群間的關係時，所採取的5種策略。

參考資料

國立編譯館．(1989)．師範學院數學科教學研究．正中書局．

卞瑞賢譯．(1980)．Nathan Insacks著．皮亞傑兒童心理學淺述．聯經出版事業公司．

林煒茂．(1989)．國小機率教材－「大數法則、機率值」教學困難與對策之試探研究．屏東師範學院．

台灣省國民學校教師研習會．(1994)．國民小學數學實驗課程教師手冊，第四冊．台灣省國民學校教師研習會．